Programming languages — C

ABSTRACT

(Cover sheet to be provided by ISO Secretariat.)

This International Standard specifies the form and establishes the interpretation of
programs expressed in the programming language C. Its purpose is to promote
portability, reliability, maintainability, and efficient execution of C language programs on

a variety of computing systems.

Clauses are included that detail the C language itself and the contents of the C language
execution library. Annexes summarize aspects of both of them, and enumerate factors
that influence the portability of C programs.

Although this International Standard is intended to guide knowledgeable C language
programmers as well as implementors of C language translation systems, the document
itself is not designed to serve as a tutorial.

Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are member of ISO or IEC participate in the
development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. 1ISO and IEC
technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with 1ISO and IEC, also
take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC
Directives, Part 3. Accordingly, annexes F and | form a normatweqd this standard;|

this foreword, the introduction, notes, footnotes, examples, annexes A, B, C, D, E, |G, H
J, K, the bibliography, and the index are for information only |

In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical
committee are circulated to national bodies for voting. Publication as an International
Standard requires approval by at least 75% of the national bodies casting a vote.

International Standard ISO/IEC 9899 was prepared by Joint Technical Committee
ISO/IEC JTC 1, “Information Technology”, subcommittee 22, “Programming
languages, their environments and system software interfaces”.

Introduction

With the introduction of new devices and extended character sets, new features may be
added to this International Standard. Subclauses in the language and library clauses warn
implementors and programmers of usages which, though valid in themselves, may
conflict with future additions.

Certain features arebsolescent which means that they may be considered for
withdrawal in future revisions of this International Standard. They are retained because
of their widespread use, but their use in new implementations (for implementation
features) or new programs (for language [6.11] or library features [7.26]) is discouraged.

This International Standard is divided into four major subdivisions:

— the introduction and preliminary elements;

— the characteristics of environments that translate and execute C programs;
— the language syntax, constraints, and semantics;

— the library facilities.

Examples are provided to illustrate possible forms of the constructions described.
Footnotes are provided to emphasize consequences of the rules described in that
subclause or elsewhere in this International Standard. References are used to refer to
other related subclauses. Recommendations are provided todgice ar guidance to|
implementors. Annexes prigle additional information and summarize the information
contained in this International Standard. A bibliograpists| documents that werg
referred to during the preparation of the standard.

The language clause (clause 6) is derived from “The C Reference Manual”.
The library clause (clause 7) is based onl®®4 /usr/group Standard

Contents
1. Scope
2. Normative references .
3. Terms and definitions .
4. Conformance
5.

Environment . .

5.1 Conceptual models oo
5.1.1 Translation environment .
5.1.2 Execution environments .

5.2 Environmental considerations .
5.2.1 Character sets .

5.2.2 Character display semantlcs :

5.2.3 Signals and interrupts .
5.2.4 Environmental limits

6. Language .
6.1 Notatron
6.2 Concepts . .o
6.2.1 Scopes of |dent|f|ers
6.2.2 Linkages of identifiers .
6.2.3 Name spaces of identifiers .

6.2.4 Storage durations of objects .

6.2.5 Types
6.2.6 Representatrons of types

6.2.7 Compatible type and composite type .

6.3 Conversions . . .
6.3.1 Arithmetic operands
6.3.2 Other operands.
6.4 Lexical elements.
6.4.1 Keywords .
6.4.2 Identifiers . . .
6.4.3 Universal character names.
6.4.4 Constants .
6.4.5 String literals
6.4.6 Punctuators .
6.4.7 Header names . .
6.4.8 Preprocessing numbers .
6.4.9 Comments
6.5 Expressions.
6.5.1 Primary expressrons
6.5.2 Postfix operators .
6.5.3 Unary operators

6.6
6.7

6.8

6.9

6.10

6.5.4 Cast operators .

6.5.5 Multiplicative operators
6.5.6 Additive operators

6.5.7 Bitwise shift operators.
6.5.8 Relational operators.

6.5.9 Equality operators

6.5.10 BitwiseAND operator .
6.5.11 Bitwise exclusiv®R operator .
6.5.12 Bitwise inclusiv®©R operator
6.5.13 LogicalAND operator

6.5.14 LogicalOR operator .
6.5.15 Conditional operator.
6.5.16 Assignment operators.
6.5.17 Comma operator .
Constant expressions.

Declarations Coe e
6.7.1 Storage-class specifiers .
6.7.2 Type specifiers .

6.7.3 Type qualifiers .

6.7.4 Function specifiers .

6.7.5 Declarators

6.7.6 Type names .

6.7.7 Type definitions

6.7.8 Initialization

Statements . Ce e
6.8.1 Labeled statements. .

6.8.2 Compound statement, or block . .

6.8.3 Expression and null statements.
6.8.4 Selection statements .
6.8.5 Iteration statements .

6.8.6 Jump statements .

External definitions .

6.9.1 Function definitions . .
6.9.2 External object definitions .
Preprocessing directives .

6.10.1 Conditional inclusion

6.10.2 Source file inclusion.

6.10.3 Macro replacement .

6.10.4 Line control

6.10.5 Error directive .

6.10.6 Pragma directive .

6.10.7 Null directive .o
6.10.8 Predefined macro names .
6.10.9 Pragma operator .

71
72
72
74
75
76
1
77
78
78
78
79
80
82
84

. 86

87
88
96

. 100

. 102

.. 109
. 110

. 112

. 119

. . 119
. 120

. 120

. 121

. 123

. 125

. . 129
.. 129
. 132

. . 133
. 135

. 136

. 138

. 144

. 145

. 145

. . 146
. 146

. 147

6.11

. Library

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9
7.10
7.11

7.12

Future language directions . .
6.11.1 Character escape sequences
6.11.2 Storage-class specifiers .
6.11.3 Function declarators.

6.11.4 Function definitions .

6.11.5 Pragma directives.

Introductlon

7.1.1 Definitions of terms

7.1.2 Standard headers.

7.1.3 Reserved identifiers.

7.1.4 Use of library functions
Diagnosticsassert.h>

7.2.1 Program diagnostics.

Complex arithmetiecomplex.h>

7.3.1 Introduction

7.3.2 Conventions .

7.3.3 Branchcuts . . . :
7.3.4 TheCX_LIMITED RANGEpragma :
7.3.5 Trigonometric functions . .
7.3.6 Hyperbolic functions

7.3.7 Exponential and logarithmic functlons
7.3.8 Power and absolute-value functions .
7.3.9 Manipulation functions

Character handlingctype.h>

7.4.1 Character testing functions.

7.4.2 Character case mapping functions
Errors<errno.h> :

Floating-point envwonmemifenv h>

7.6.1 TheFENV ACCES$ragma :

7.6.2 Exceptions -

7.6.3 Rounding .

7.6.4 Environment . .

Characteristics of floating typeﬁoat h>
Format conversion of integer typdattypes.h>
7.8.1 Macros for format specifiers .

7.8.2 Conversion functions for greatest- W|dth mteger types

Alternative spellingsiso646.h>

Sizes of integer typedimits.h>
Localizatiorclocale.h>

7.11.1 Locale control . .
7.11.2 Numeric formatting conventlon |an|ry
Mathematicsmath.h> .

7.12.1 Treatment of error condltlons

. . 148
. 148
. 148
. 148
. 148
. 148

. .149
. . 149
. 149

. 150

. . 151
. 151

. 154

. . 154
. 155

. 155

. 156

. . 156
. 156
. 157

. . 159
. 162
. 162

. 164

. 167
.. 167
. 170

. 172
. 173

. 175

. 176
.178

. . 180
.. 182
. 183
. 183

185

. 187

. 188

. 189

. .190
. 191
. . 196
. 198

7.13

7.14

7.15

7.16

7.17
7.18

7.19

7.20

7.12.2 TheFP_CONTRACPragma

7.12.3 Classification macros .

7.12.4 Trigonometric functions .

7.12.5 Hyperbolic functions

7.12.6 Exponential and logarithmic functlons
7.12.7 Power and absolute-value functions.
7.12.8 Error and gamma functions.

7.12.9 Nearest integer functions

7.12.10 Remainder functions .

7.12.11 Manipulation functions

7.12.12 Maximum, minimum, and posmve dn‘ference functlons

7.12.13 Floating multiply-add .

7.12.14 Comparison macros.

Nonlocal jumpssetjmp.h>

7.13.1 Save calling environment

7.13.2 Restore calling environment .

Signal handlingsignal.h> :

7.14.1 Specify signal handllng .

7.14.2 Send signal . .

Variable argumentsstdarg.h> : :
7.15.1 Variable argument list access macros .
Boolean type and valugstdbool.h>

Common definitionsstddef.h>

Integer typesstdint.h>

7.18.1 Integer types. .

7.18.2 Limits of specified- W|dth mteger types
7.18.3 Limits of other integer types .

7.18.4 Macros for integer constants .
Input/outpukstdio.h>

7.19.1 Introduction .

7.19.2 Streams.

7.19.3 Files .

7.19.4 Operations on flles .

7.19.5 File access functions . .
7.19.6 Formatted input/output functlons :
7.19.7 Character input/output functions
7.19.8 Direct input/output functions .

7.19.9 File positioning functions.

7.19.10 Error-handling functions .

General utilitiesstdlib.h> .

7.20.1 String conversion functions.

7.20.2 Pseudo-random sequence generation functlons.

7.20.3 Memory management functions.
7.20.4 Communication with the environment .

. 199
. 199
. 202
. . 204
. 206
. 212
. 214
. 215
. 219
. 220

222

. 224

. 224

. 228

. 228

. 229

. 231

. 232

. . 233
. . 234
. 234

. 238

. 239

. 240

. . 240
. 242

. 244

. 245

. 247

. 247

. 249

. .250
. 252

. . 254
. 258

. 280

. 285

. 286

. 289

.. 291
.. 291
. 296
.. 297
. 299

7.21

71.22

7.23

7.24

7.25

7.26

7.20.5 Searching and sorting utilities.

7.20.6 Integer arithmetic functions.

7.20.7 Multibyte character functions .

7.20.8 Multibyte string functions

String handlingstring.h> .

7.21.1 String function conventions.

7.21.2 Copying functions

7.21.3 Concatenation functions.

7.21.4 Comparison functions .

7.21.5 Search functions .

7.21.6 Miscellaneous functions .

Type-generic maitgmath.h>

7.22.1 Type-generic macros .

Date and timetime.h>

7.23.1 Components of time. .

7.23.2 Time manipulation functions .

7.23.3 Time conversion functions . .

Extended multibyte and wide-character utllrﬁm:har h>

7.24.1 Introduction . .

7.24.2 Formatted wide- character mput/output functrons

7.24.3 Wide-character input/output functions .

7.24.4 General wide-string utilities. .

7.24.5 Wide-character time conversion functlons : .

7.24.6 Extended multibyte and wide-character conversion
utilities

Wide-character classrfrcatron and mapprng utrlmwstype h>

7.25.1 Introduction . :

7.25.2 Wide-character classrfrcatron utrlrtres

7.25.3 Wide-character mapping utilities

Future library directions. .

7.26.1 Complex arrthmetrscomplex h>

7.26.2 Character handlingctype.h>

7.26.3 Error<errno.h> :

7.26.4 Format conversion of mteger typmsttypes h>

7.26.5 Localizatiorxlocale.h> C e e

7.26.6 Signal handlingsignal.h> .o

7.26.7 Boolean type and valuestdbool.h>

7.26.8 Integer typesstdint.h>

7.26.9 Input/outpukstdio.h>

7.26.10 General utilitiesstdlib.h>

7.26.11 String handlingstring.h> :

7.26.12 Extended multibyte and wide- character utrlrtres
<wchar.h>

. 302

. 304

. 305

. 307

... 309
. 309

. ..309
. 311

. 312

. . 314
. 317

. 319

. 319

. 322

.. 322
. 323

. . 328
. 336
. . 336
. 337
. 354

. . 359
. 373

. 375

381

. . 381
. 382
. 387

. .390
. 390
. 390

. 390

390

. ..390
... 390
. 391
. 391
.. 391
. 391
. 391

. 391

7.26.13 Wide-character classification and mapping utilities
<wctype.h>

Annex A (informative) Language syntax summary .

Al
A2
A3

Lexical grammar
Phrase structure grammar
Preprocessing directives

Annex B (informative) Library summary

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B.23
B.24

Diagnosticsassert.h>

Complex<complex.h>

Character handlingctype.h>

Errors<errno.h> :

Floating-point envrronmemfenv h>
Characteristics of floating typefloat.h>
Format conversion of integer typesttypes.h>
Alternative spellingsiso646.h> .
Sizes of integer typedimits.h>
Localizatior<locale.h>
Mathematicsmath.h>

Nonlocal jumpssetjmp.h>

Signal handlingsignal.h>

Variable argumentsstdarg.h>

Boolean type and valuestdbool.h>

Common definitionsstddef.h>

Integer typesstdint.h>

Input/outpukstdio.h>

General utilitiexstdlib.h>

String handling:string.h>

Type-generic matktgmath.h>

Date and timetime.h> :

Extended multibyte and wide- character utrlrtw\ﬂ:har h>
Wide-character classification and mapping utilkiestype.h>

Annex C (informative) Sequence points.

Annex D (informative) Formal model of sequence points .

D.1
D.2
D.3
D.4
D.5

Introduction

Basic concepts .
Operation of the model .
Application .

Examples

Annex E (informative) Implementation limits.

Annex F (normative) IEC 60559 floating-point arithmetic .

F.1

Introduction

Vi

. 391

. 392

. .392
. 397

. 404

. 406

. 406

. . 406
. 408

. . 408
. . 408
. . 409
. 409
. 410

. 410

. 410

.. 411
. 415

. . 415
. . 415
. 416

. 416

. 416

. 417
. 419

. 420

. 421

. . 421
. 422

424

. 426

. 427
427
. 427
. 429
.432
.433

. 442

. 444
.444

F.2
F.3
F.4
F.5
F.6
F.7
F.8
F.9

Annex G (informative) IEC 60559-compatible complex arithmetic

G.1
G.2
G.3
G4
G.5
G.6

Types

Operators and functlons
Floating to integer conversion .
Binary-decimal conversion.
Contracted expressions.
Environment

Optimization .
Mathematicsmath.h>

Introduction

Types

Conversions

Binary operators .

Complex arlthmetlscomplex h>
Type-generic matktgmath.h>

Annex H (informative) Language independent arithmetic .

H.1
H.2
H.3

Annex | (normative) Universal character names for identifiers .

Introduction
Types
Notification .

Annex J (informative) Common warnings .

Annex K (informative) Portability issues

K.1
K.2
K.3
K.4
K.5

Unspecified behavior .
Undefined behavior
Implementation-defined behaV|or
Locale-specific behavior
Common extensions .

Bibliography

Index

Vil

. .444
. . 445
. 447

. 447

. 447
447

. .450
. 454

. 467
. 467

. .467
. 467

. .468
. 473

. 480

. 481
.481

. .481
.484

. 487
. 489

. 490
. 490
. . 492
. 505
. 511
. 512

.515
517

viii

1.

Programming languages — C

Scope

This International Standard specifies the form and establishes the interpretation of
programs written in the C programming langu&gé. specifies

the representation of C programs;

the syntax and constraints of the C language;

the semantic rules for interpreting C programs;

the representation of input data to be processed by C programs;

the representation of output data produced by C programs;

the restrictions and limits imposed by a conforming implementation of C.

This International Standard does not specify

the mechanism by which C programs are transformed for use by a data-processing
system;

the mechanism by which C programs are invoked for use by a data-processing
system;

the mechanism by which input data are transformed for use by a C program;

the mechanism by which output data are transformed after being produced by a C
program;

the size or complexity of a program and its data that will exceed the capacity of any
specific data-processing system or the capacity of a particular processor;

all minimal requirements of a data-processing system that is capable of supporting a
conforming implementation.

1)

This International Standard is designed to promote the portability of C programs among a variety of
data-processing systems. It is intended for use by implementors and programmers.

General 1

2 Committee Draft — August 3, 1998 WG14/N843

2. Normative references

The following normative documents contain provisions which, through reference in this
text, constitute provisions of this International Standard. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply.
However, parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the normative
documents indicated below. For undated references, the latest edition of the normative
document referred to applies. Members of ISO and IEC maintain registers of currently
valid International Standards.

ISO/IEC 646:1991,Information technology —SO 7-bit coded chaacter set for |
information interchange

ISO/IEC 2382-1:1993Information technology — Vocabulary — Part 1: Fundamental
terms

ISO 4217:1995Codes for the representation of currencies and funds

ISO 8601:1988Data elements and interchange formats — Information interchange —
Representation of dates and times

ISO/IEC 10646:1993,Information technology — Univeal Multiple-Octet Coded|
Character Set (UCS) |

IEC 60559:1989Binary floating-point arithmetic for micropcessor systems, second
edition (previously designated IEC 559:1989).

3. Terms and definitions

For the purposes of this International Standard, the following definitions apply. Other
terms are defined where they appeaitatic type or on the left side of a syntax rule.
Terms explicitly defined in this International Standard are not to be presumed to refer
implicitly to similar terms defined elsewhere. Terms not defined in this International
Standard are to be interpreted according to ISO/IEC 2382-1.

3.1

alignment

requirement that objects of a particular type be located on storage boundaries with
addresses that are particular multiples of a byte address

3.2

argument

actual argument

actual parameter (deprecated)

expression in the comma-separated list bounded by the parentheses in a function call
expression, or a sequence of preprocessing tokens in the comma-separated list bounded
by the parentheses in a function-like macro invocation

2 General 3.2

WG14/N843 Committee Draft — August 3, 1998 3

3.3

bit

unit of data storage in the execution environment large enough to hold an object that may
have one of two values

NOTE It need not be possible to express the address of each individual bit of an object.

3.4

byte

addressable unit of data storage large enough to hold any member of the basic character
set of the execution environment

NOTE 1 Itis possible to express the address of each individual byte of an object uniquely.

NOTE 2 A byte is composed of a contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called kw-order bit the most significant bit is called théh-order
bit.

3.5
character
bit representation that fits in a byte [

3.6

constraints

restrictions, both syntactic and semantic, by which the exposition of language elements is
to be interpreted

3.7

correctly rounded result

a representation in the result format that is nearest in value, subject to the effective
rounding mode, to what the result would be given unlimited range and precision

3.8

diagnostic message

message belonging to an implementation-defined subset of the implementation’s message
output

3.9

forward references

references to later subclauses of this International Standard that contain additional
information relevant to this subclause

3.10

implementation

a particular set of software, running in a particular translation environment under
particular control options, that performs translation of programs for, and supports
execution of functions in, a particular execution environment

3.3 General 3.10

4 Committee Draft — August 3, 1998 WG14/N843

3.11
implementation-defined behavior
unspecified behavior where each implementation documents how the choice is made

EXAMPLE An example of implementation-defined behavior is the propagation of the high-order bit
when a signed integer is shifted right.

3.12
implementation limits
restrictions imposed upon programs by the implementation

3.13

locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each
implementation documents

EXAMPLE An example of locale-specific behavior is whetheridt@wver function returns true for
characters other than the 26 lowercase Latin letters.

3.14

multibyte character

sequence of one or more bytes representing a member of the extended character set of
either the source or the execution environment

NOTE The extended character set is a superset of the basic character set.

3.15

object

region of data storage in the execution environment, the contents of which can represent
values |

NOTE When referenced, an object may be interpreted as having a particular type; see 6.3.2.1. |

3.16

parameter

formal parameter

formal argument (deprecated)

object declared as part of a function declaration or definition that acquires a value on
entry to the function, or an identifier from the comma-separated list bounded by the
parentheses immediately following the macro name in a function-like macro definition

3.17

recommended practice

specifications that are strongly recommended as being in keeping with the intent of the
standard, but that may be impractical for some implementations

3.11 General 3.17

WG14/N843 Committee Draft — August 3, 1998 5

3.18

undefined behavior

behavior, upon use of a nonportable or erroneous program construct, of erroneous data, or
of indeterminately valued objects, for which this International Standard imposes no
requirements

NOTE Possible undefined behar ranges from ignoring the situation completely with unpredictaple
results, to behaving during translation or program execution in a documented manner characteristic of the
environment (with or without the issuance of a diagnostic message), to terminating a translation or
execution (with the issuance of a diagnostic message).

EXAMPLE An example of undefined behavior is the behavior on integer overflow.

3.19

unspecified behavior

behavior where this International Standard provides two or more possibilities and
imposes no requirements on which is chosen in any instance

EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are
evaluated.

Forward references: bitwise shift operators (6.5.7), expressions (6.5), function calls
(6.5.2.2), thaslower function (7.4.1.6), localization (7.11).

4. Conformance

In this International Standard, “shall” is to be interpreted as a requirement on an
implementation or on a program; conversely, “shall not” is to be interpreted as a
prohibition.

If a “shall” or “shall not” requirement that appears outside of a constraint is violated, the
behavior is undefined. Undefined behavior is otherwise indicated in this International
Standard by the words “undefined behavior” or by the omission of any explicit definition
of behavior. There is no difference in emphasis among these three; they all describe
“behavior that is undefined”.

A program that is correct in all other aspects, operating on correct data, containing
unspecified behavior shall be a correct program and act in accordance with 5.1.2.3.

The implementation shall not successfully translate a preprocessing translation unit
containing a#error preprocessing directivenless it is part of a group skipped Ry
conditional inclusion.

A strictly conforming progranshall use only those features of the language and library
specified in this International Stand&tdlt shall not produce output dependent on any
unspecified, undefined, or implementation-defined behavior, and shall not exceed any
minimum implementation limit.

3.17 General 4

6 Committee Draft — August 3, 1998 WG14/N843

The two forms otonforming implementatioare hosted and freestanding.cénforming

hosted implementatioshall accept any strictly conforming program. cAnforming
freestanding implementatioshall accept any strictly conforming program that does not
use complex types and in which the use of the features specified in the library clause
(clause 7) is confined to the contents of the standard head&rat.h>
<is0646.h> , <limits.h> , <stdarg.h> , <stdbool.h> , <stddef.h> , and
<stdint.h> . A conforming implementation may have extensions (including additional
library functions), provided they do not alter the behavior of any strictly conforming
program®)

A conforming progranis one that is acceptable to a conforming implementétion.

An implementation shall be accompanied by a document that defines all implementation-
defined and locale-specific characteristics and all extensions.

Forward references: conditional inclusion (6.10.1), characteristics of floating types
<float.h> (7.7), alternative spellingsiso646.h> (7.9), sizes of inger types |
<limits.h> (7.10), variable argumentsstdarg.h> (7.15), boolean type andes |
<stdbool.h> (7.16), common definitions<stddef.h> (7.17), intger types |
<stdint.h> (7.18).

2) A strictly conforming program can use conditional features (such as those in annexié®@dptbe |
use is guarded by#fdef directive with the appropriate macro. Fomaenple: |

#ifdef __STDC_IEC_559_ _ /*FE_UPWARD defined */
o
fesetround(FE_UPWARD);
T |

#endif

3) This implies that a conforming implementation reserves no identifiers other than those explicitly
reserved in this International Standard.

4) Strictly conforming programs are intended to be maximally portable among conforming
implementations. Conforming programs may depend upon nonportable features of a conforming
implementation.

4 General 4

WG14/N843 Committee Draft — August 3, 1998 7

5. Environment

An implementation translates C source files and executes C programs in two data-
processing-system environments, which will be calledttheslation environmenand

the execution environmenmt this International Standard. Their characteristics define and
constrain the results of executing conforming C programs constructed according to the
syntactic and semantic rules for conforming implementations.

Forward references: In this clause, only a few of many possible forward references
have been noted.

5.1 Conceptual models
5.1.1 Translation environment

5.1.1.1 Program structure

A C program need not all be translated at the same time. The text of the program is kept
in units calledsource files (or preprocessing filgsin this International StandardA |
source file together with all the headers and source files included via the preprocessing
directive#include is known as g@reprocessing translation uniAfter preprocessing, a
preprocessing translation unit is callettamslation unit Previously translated translation

units may be preserved individually or in libraries. The separate translation units of a
program communicate by (for example) calls to functions whose identifiers have external
linkage, manipulation of objects whose identifiers have external linkage, or manipulation
of data files. Translation units may be separately translated and then later linked to
produce an executable program.

Forward references: conditional inclusion (6.10.1), linkages of identifiers (6.2.2),
source file inclusion (6.10.2), external definitions (6.9), preprocessing directives (6.10).

5.1.1.2 Translation phases

The prc)ecedence among the syntax rules of translation is specified by the following
phases.

1. Physical source file multibyte characters are mapped to the source character set
(introducing new-line characters for end-of-line indicators) if necessaigraph |
sequences are replaced by corresponding single-character internal representations.

2. Each instance of a backslash charadtg¢rirfimediately followed by a new-line
character is deleted, splicing physical source lines to form logical sourcelfings.
as a result, a character sequence that matches the syntax ofraalicivaracter|
name is produced, the behavior is undefined. Only the last backslash on any
physical source line shall be eligible for being part of such a splice. A source file
that is not empty shall end in a new-line character, which shall not be immediately
preceded by a backslash character before any such splicing takes place.

5) Implementations shall behave as if these separate phases occur, even though many are typically folded
together in practice.

5 Environment 51.1.2

8 Committee Draft — August 3, 1998 WG14/N843

3. The source file is decomposed into preprocessing t8kand sequences of
white-space characters (including comments). A source file shall not end in a
partial preprocessing token or in a partial comment. Each comment is replaced by
one space character. New-line characters are retained. Whether each nhonempty
sequence of white-space characters other than new-line is retained or replaced by
one space character is implementation-defined.

4. Preprocessing directives are executed, macro invocationsxpended, and|
_Pragma unary operator expressions are executed. If a character sequence that
matches the syntax of a universal character name is produced by token
concatenation (6.10.3.3), the behavior is undefinedinalude preprocessing
directive causes the named header or source file to be processed from phase 1
through phase 4, recursively. All preprocessing directives are then deleted.

5. Each source character set member, escape sequence, and universal character name
in character constants and string literals is converted to the corresponding member
of the execution character set; if there is no corresponding member, it is converted
to an implementation-defined member.

Adjacent string literal tokens are concatenated.

White-space characters separating tokens are no longer significant. Each
preprocessing token is converted into a token. The resulting tokens are
syntactically and semantically analyzed and translated as a translation unit.

8. All external object and function references are resolved. Library components are
linked to satisfy external references to functions and objects not defined in the
current translation. All such translator output is collected into a program image
which contains information needed for execution in its execution environment.

Forward references: universal character names (6.4.3), lexical elements (6.4),
preprocessing directives (6.10), trigraph sequences (5.2.1.1), external definitions (6.9).

5.1.1.3 Diagnostics

A conforming implementation shall produce at least one diagnostic message (identified in
an implementation-defined manner) if a preprocessing translation unit or translation unit
contains a violation of any syntax rule or constraint, even if the behavior is also explicitly
specified as undefined or implementation-defined. Diagnostic messages need not be
produced in other circumstances.

EXAMPLE Animplementation shall issue a diagnostic for the translation unit:

6) As described in 6.4, the process of dividing a source file's characters into preprocessing tokens is
context-dependent. For example, see the handlirgnathin a#include preprocessing directive.

7) The intent is that an implementation should identify the nature of, and where possible localize, each
violation. Of course, an implementation is free to produce any number of diagnostics as long as a
valid program is still correctly translated. It may also successfully translate an invalid program.

51.1.2 Environment 51.1.3

WG14/N843 Committee Draft — August 3, 1998 9

chari;

inti;
because in those cases where wording in this International Standard describes the behavior for a construct
as being both a constraint error and resulting in undefined behavior, the constraint error shall be diagnosed.

5.1.2 Execution environments

Two execution environments are defindtbestandingand hosted In both cases,
program startupoccurs when a designated C function is called by the execution
environment. All objects in static storage shallihigalized (set to their initial values)
before program startup. The manner and timing of such initialization are otherwise
unspecified.Program terminatiorreturns control to the execution environment.

Forward references: initialization (6.7.8).
5.1.2.1 Freestanding environment

In a freestanding environment (in which C program execution may take place without any
benefit of an operating system), the name and type of the function called at program
startup are implementation-defined. Any library facilitiesilaide to a freestanding
program, other than the minimal set required by clause 4, are implementation-defined.

The effect of program termination in a freestanding environment is implementation-
defined.

5.1.2.2 Hosted environment

A hosted environment need not be provided, but shall conform to the following
specifications if present.

5.1.2.2.1 Program startup

The function called at program startup is nammain . The implementation declares no
prototype for this function. It shall be defined with a return typenof and with no
parameters:

int main(void) { /* o X}

or with two parameters (referred to hereaagc andargv , though any names may be
used, as they are local to the function in which they are declared):

int main(int argc, char *argv[]) { /* o X}
or equivalen®) or in some other implementation-defined manner.

If they are declared, the parameters to iim@in function shall obey the following
constraints:

8) Thus,int can be replaced by a typedef name definddtas or the type ofargv can be written as
char ** argv , and so on.

51.1.3 Environment 51.22.1

10 Committee Draft — August 3, 1998 WG14/N843

— The value ofargc shall be nonnegative.
— argv|argc] shall be a null pointer.

— If the value ofargc is greater than zero, the array membargv[0] through
argv[argc-1] inclusive shall contain pointers to strings, which are given
implementation-defined values by the host environment prior to program startup. The
intent is to supply to the program information determined prior to program startup
from elsewhere in the hosted environment. If the host environment is not capable of
supplying strings with letters in both uppercase and lowercase, the implementation
shall ensure that the strings are received in lowercase.

— If the value ofargc is greater than zero, the string pointed to drgv|[0]
represents thgrogram name argv[0][0] shall be the null character if the
program name is not available from the host environment. If the valagyof is
greater than one, the strings pointed to dgv[l] through argv[argc-1]
represent therogram parameters

— The parameterargc andargv and the strings pointed to by thegv array shall
be modifiable by the program, and retain their last-stored values between program
startup and program termination.

5.1.2.2.2 Program execution

In a hosted environment, a program may use all the functions, macros, type definitions,
and objects described in the library clause (clause 7).

5.1.2.2.3 Program termination

If the return type of thenain function is a type compatible wiiht , a return from the |
initial call to themain function is equivalent to calling trexit function with the value
returned by thenain function as its argumeftreaching thé that terminates themain |
function returns a value of 0. If the return type is not compatible with, the
termination status returned to the host environment is unspecified.

Forward references: definition of terms (7.1.1), thexit function (7.20.4.3).
5.1.2.3 Program execution

The semantic descriptions in this International Standard describe the behavior of an
abstract machine in which issues of optimization are irrelevant.

Accessing a volatile object, modifying an object, modifying a file, or calling a function
that does any of those operations aresie effects?) which are changes in the state of

the execution environment. Evaluation of an expression may produce side effects. At
certain specified points in the execution sequence cedl@dence pointgll side effects

of previous evaluations shall be complete and no side effects of subsequent evaluations
shall have taken place. (A summary of the sequence points is given in annex C.)

9) In accordance with 6.2.4, objects with automatic storage duration declamaninwill no longer
have storage guaranteed to be reserved in the former case even where they would in the latter.

51.2.2.1 Environment 51.2.3

10

WG14/N843 Committee Draft — August 3, 1998 11

In the abstract machine, all expressions are evaluated as specified by the semantics. An
actual implementation need not evaluate part of an expression if it can deduce that its
value is not used and that no needed side effects are produced (including any caused by
calling a function or accessing a volatile object).

When the processing of the abstract machine is interrupted by receipt of a signal, only the
values of objects as of the previous sequence point may be relied on. Objects that may be
modified between the previous sequence point and the next sequence point need not have
received their correct values yet.

An instance of each object with automatic storage duration is associated with each entry
into its block. Such an object exists and retains its last-stored value during the execution
of the block and while the block is suspended (by a call of a function or receipt of a
signal).

The least requirements on a conforming implementation are:

— At sequence points, volatile objects are stable in the sense thmtugraccesses are
complete and subsequent accesses have not yet occurred.

— At program termination, all data written into files shall be identical to the result that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place as specified in
7.19.3. The intent of these requirements is that unbuffered or line-buffered output
appear as soon as possible, to ensure that prompting messages actually appear prior to
a program waiting for input.

What constitutes an interactive device is implementation-defined.

More stringent correspondences between abstract and actual semantics may be defined by
each implementation.

EXAMPLE 1 An implementation might define a one-to-one correspondence between abstract and actual
semantics: at every sequence point, the values of the actual objects would agree with those specified by the
abstract semantics. The keywatalatile would then be redundant.

Alternatively, an implementation might perform various optimizations within each translation unit, such
that the actual semantics would agree with the abstract semantics only when making function calls across
translation unit boundaries. In such an implementation, at the time of each function entry and function
return where the calling function and the called function are in different translation units, the values of all
externally linked objects and of all objects accessible via pointers therein would agree with the abstract
semantics. Furthermore, at the time of each such function entry the values of the parameters of the called
function and of all objects accessible via pointers therein would agree with the abstract semantics. In this
type of implementation, objects referred to by interrupt service routines activateddigrthlie function

10) The IEC 60559 standard for binary floating-point arithmetic requires certain user-accessible status
flags and control modes. Floating-point operations implicitly set the status flags; modes affect result
values of floating-point operations. Implementations that support such floating-point state are
required to regard changes to it as side effects — see annex F for details. The floating-point
environment library<fenv.h> provides a programming facility for indicating when these side
effects matter, freeing the implementations in other cases.

51.2.3 Environment 51.2.3

11

12

13

14

12 Committee Draft — August 3, 1998 WG14/N843

would require explicit specification ofolatile storage, as well as other implementation-defined
restrictions.

EXAMPLE 2 In executing the fragment

char c1, c2;
|
cl=cl+c2

the “integer promotions” require that the abstract machine promote the value of each variablesiae

and then add the twiat s and truncate the sum. Provided the addition ofdar s can be done without
overflow, or with overflow wrapping silently to produce the correct result, the actual execution need only
produce the same result, possibly omitting the promotions.

EXAMPLE 3 Similarly, in the fragment

float f1, f2;

double d;

*

fl=1f2*d;
the multiplication may be executed using single-precision arithmetic if the implementation can ascertain
that the result would be the same as if it were executed using double-precision arithmetic (for exdmple, if
were replaced by the constan® , which has typeouble).

EXAMPLE 4 Implementations employing wide registers have to take care to honor appropriate
semantics. Values are independent of whether they are represented in a register or in memory. For
example, an implicispilling of a register is not permitted to alter the value. Also, an exptwie and load

is required to round to the precision of the storage type. In particular, casts and assignments are required to
perform their specified conversion. For the fragment

double d1, d2;

float f;

di=f= expression

d2 = (float) expressions

the values assigned dd andd2 are required to have been convertetidat

EXAMPLE 5 Rearrangement for floating-point expressions is often restricted because of limitations in
precision as well as range. The implementation cannot generally apply the mathematical associative rules
for addition or multiplication, nor the distributive rule, because of roundoff error, even in the absence of
overflow and underflow. Likewise, implementations cannot generally replace decimal constants in order to
rearrange expressions. In the following fragment, rearrangements suggested by mathematical rules for real
numbers are often not valid (see F.8).

double x, vy, z;

%

XxX=X*y *z not equivalenttx *= y * z;
z=X-y)+y ;I not equivalentta = x;

Z =X+ X*y; I not equivalentta = x * (1.0 +vy);
y = x/ b5.0; 1 not equivalentty = x * 0 .2;

5.1.2.3 Environment 5.1.2.3

15

16

WG14/N843 Committee Draft — August 3, 1998 13

EXAMPLE 6 To illustrate the grouping behavior of expressions, in the following fragment

int a, b;
|
a =a+ 32760+ b + 5;

the expression statement behaves exactly the same as
a = (((a+32760) + b) +5);

due to the associativity and precedence of these operators. Thus, the result of (he 82760) is
next added td, and that result is then addedstevhich results in the value assignedatdOn a machine in
which overflows produce an explicit trap and in which the range of values representablénby isn
[-32768, +32767], the implementation cannot rewrite this expression as

a = ((a+b)+32765);

since if the values foa andb were, respectively, —32754 and -15, the sum b would produce a trap
while the original expression would not; nor can the expression be rewritten either as

((a + 32765) + b);

a
or
a=(a+ (b + 32765));

since the values fa andb might have been, respectively, 4 and -8 or —17 and 12. However, on a machine
in which overflow silently generates some value and where positive and negative overflows cancel, the
above a&pression statement can be rewritten by the implementation in any ofdhe afys because the

same result will occur.

EXAMPLE 7 The grouping of an expression does not completely determine its evaluation. In the
following fragment

#include <stdio.h>

int sum;

char *p;

%

sum =sum * 10 - '0’ + (*p++ = getchar());

the expression statement is grouped as if it were written as
sum = (((sum * 10) - '0') + ((*(p++)) = (getchar())));

but the actual increment @f can occur at any time between the previous sequence point and the next
sequence point (thg), and the call t@etchar can occur at any point prior to the need of its returned
value.

Forward references: compound statement, or block (6.8.2), expressions (6.5), files
(7.19.3), sequence points (6.5, 6.8),dlgmal function (7.14), type qualifiers (6.7.3).

5.1.2.3 Environment 5.1.2.3

14 Committee Draft — August 3, 1998 WG14/N843

5.2 Environmental considerations

5.2.1 Character sets

Two sets of characters and their associated collating sequences shall be defined: the set in
which source files are written, and the set interpreted in the execution environment. The
values of the members of the execution character set are implementation-defined; any
additional members beyond those required by this subclause are locale-specific.

In a character constant or string literal, members of the execution character set shall be
represented by corresponding members of the source character set emcape
sequencesonsisting of the backslashfollowed by one or more characters. A byte with

all bits set to O, called thaull character, shall exist in the basic execution character set; it

is used to terminate a character string.

Both the basic source and basic execution character sets shall have at least the following
members: the 26 uppercase letters of the Latin alphabet

A B CDEF G H I J KL M
N O P Q R ST UV W X Y Z

the 26 lowercase letters of the Latin alphabet

a b c d e f g h i j k I m
n o p qr s t uv w x y z

the 10 decimal digits
0 1.2 3 45 6 7 8 9
the following 29 graphic characters

Lt % & () * o+, -]
, < = >2 [0 v -~ _ {1}~

the space character, and control characters representing horizontal tab, vertical tab, and
form feed. The representation of each member of the source andtiemebasic |
character sets shall fit in a byte. In both the source and execution basic character sets, the
value of each character af@in the alovelist of decimal digits shall be one greater than

the value of the previous. In source files, there shall be some way of indicating the end of
each line of text; this International Standard treats such an end-of-line indicator as if it
were a single new-line character. In the execution character set, there shall be control
characters representing alert, backspace, carriage return, and new line. If any other
characters are encountered in a source file (except in an identitiaraater constant, &

string literal, a header name, a comment, or a preprocessing token that is never converted
to a token), the behavior is undefined.

The universal character name construct provides a way to name other characters.

Forward references: universal character names (6.4.3), character constants (6.4.4.4),
preprocessing directives (6.10), string literals (6.4.5), comments (6.4.9), string (7.1.1).

5.2 Environment 5.2.1

WG14/N843 Committee Draft — August 3, 1998 15

5.2.1.1 Trigraph sequences

All occurrences in a source file of the following sequences of three characters (called
trigraph sequencéd)) are replaced with the corresponding single character |

27= # 2?)] 2721 |
22([27?2 7 27>)
22/ \ 272< { 27- ~

No other trigraph sequences exist. E&dhmat does not begin one of the trigraphs listed
above isnot changed.

EXAMPLE The following source line
printf("Eh???/n");

becomes (after replacement of the trigraph sequepicg
printf("Eh?\n");

5.2.1.2 Multibyte characters

The source character set may contain multibyte characters, used to represent members of
the extended character set. The execution character set may also contain multibyte
characters, which need not have the same encoding as for the source character set. For
both character sets, the following shall hold:

— The single-byte characters defined in 5.2.1 shall be present.

— The presence, meaning, and representation of any additional members is locale-
specific.

— A multibyte character set may have state-dependent encodingvherein each|
sequence of multibyte characters begins iniratial shift stateand enters other
locale-specificshift stateswhen specific multibyte characters are encountered in the
sequence. While in the initial shift state, all single-byte characters retain their usual
interpretation and do not alter the shift state. The interpretation for subsequent bytes
in the sequence is a function of the current shift state.

— A byte with all bits zero shall be interpreted as a null character independent of shift
state.

— A byte with all bits zero shall not occur in the second or subsequent bytes of a
multibyte character.

For source files, the follang shall hold: |

— An identifier, comment, string literal, character constant, or header name gall |be
and end in the initial shift state.

11) The trigraph sequences enable the input of characters that are not defined in the Invariant Code Set as
described in ISO/IEC 646, which is a subset of therséieUS ASCII code set. |

5211 Environment 52.1.2

16 Committee Draft — August 3, 1998 WG14/N843

— An identifier, @mment, string literal, character constant, or header name shall consist
of a sequence of valid multibyte characters.

5.2.2 Character display semantics

Theactive positioris that location on a display device where the next character output by
the fputc or fputwc function would appear. fle intent of writing a printable
character (as defined by tigprint oriswprint function) to a display dece is to |
display a graphic representation of that character at the active position and then advance
the active position to the next position on the current line. The direction of writing is
locale-specific. If the active position is at the final position of a line (if there is one), the
behavior is unspecified.

Alphabetic escape sequences representing nongraphic characters in the execution
character set are intended to produce actions on display devices as follows:

\a (alert) Produces an audible or visible alert. The active position shall not be changed.

\b (backspackMoves the active position to the previous position on the current line. If
the active position is at the initial position of a line, the behavior is unspecified.

\f (form feed Moves the active position to the initial position at the start of the next
logical page.

\n (new lin@ Moves the active position to the initial position of the next line.

\r (carriage returr) Moves the active position to the initial position of the current line.

\t (horizontal tal) Moves the active position to the next horizontal tabulation position
on the current line. If the active position is at or past the last defined horizontal
tabulation position, the behavior is unspecified.

\v (vertical tah Moves the active position to the initial position of the next vertical
tabulation position. If the active position is at or past the last defined vertical
tabulation position, the behavior is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value
which can be stored in a singtear object. The external representations in a text file
need not be identical to the internal representations, and are outside the scope of this
International Standard.

Forward references: the isprint function (7.4.1.7), théputc function (7.19.7.3), |
thefputwc functions (7.24.3.3), theswprint function (7.25.2.1.7).

5.2.1.2 Environment 5.2.2

WG14/N843 Committee Draft — August 3, 1998 17

5.2.3 Signals and interrupts

Functions shall be implemented such that they may be interrupted at any time by a signal,
or may be called by a signal handler, or both, with no alteration to earlier, but still active,
invocations’ control flow (after the interruption), function return values, or objects with
automatic storage duration. All such objects shall be maintained outsidanttten

image (the instructions that compose the ax@able representation of a function) on| a
per-invocation basis.

5.2.4 Environmental limits

Both the translation and execution environments constrain the implementation of
language translators and libraries. The follgg summarizes the language-related
ernvironmental limits on a conforming implementation; the library-related limits |are
discussed in clause 7.

5.2.4.1 Translation limits

The implementation shall be able to translate and execute at least one program that
contains at least one instance of every one of the following lffits:

— 127 nesting levels of compound statements, iteration statements, and selection
statements

— 63 nesting levels of conditional inclusion

— 12 pointer, array, and function declarators (in any combinations) modifying an
arithmetic, structure, union, or incomplete type in a declaration

— 63 nesting levels of parenthesized declarators within a full declarator
— 63 nesting levels of parenthesized expressions within a full expression

— 63 dgnificant initial characters in an internal identifier or a macro name (¢ach
universal character name oxtended source character is considered a single
character)

— 31 significant initial characters in an external identifier (each tsaleharacter name
specifying a character short identifier of 0000FFFF or less is considered 6 characters,
each univesal character name specifying a character short identifier of 00010000 or
more is considered 10 characters, and eatdnded source character is consideled
the same number of characters as the corresponding universal character name, if any)

— 4095 external identifiers in one translation unit

— 511 identifiers with block scope declared in one block

— 4095 macro identifiers simultaneously defined in one preprocessing translation unit
— 127 parameters in one function definition

12) Implementations should avoid imposing fixed translation limits whenever possible.

5.2.3 Environment 524.1

18 Committee Draft — August 3, 1998 WG14/N843

— 127 arguments in one function call

— 127 parameters in one macro definition

— 127 arguments in one macro invocation

— 4095 characters in a logical source line

— 4095 characters in a character string literal or wide string literal (after concatenation)
— 65535 hytes in an object (in a hosted environment only)

— 15 nesting levels fottinclude d files

— 1023case labels for aswitch statement (excluding those for any nesteatch
statements)

— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 levels of nested structure or union definitions in a single struct-declaration-list
5.2.4.2 Numerical limits

A conforming implementation shall document all the limits specified in this subclause,
which are specified in the headeisnits.h> and<float.h> . Additional limits are |
specified in<stdint.h>

5.2.4.2.1 Sizes of integer typedimits.h>

The values given below shall be replaced by constant expressions suitable fofifise in
preprocessing directives. Moreover, except @HAR_BIT and MB_LEN_MAXthe
following shall be replaced by expressions that have the same type as would an
expression that is an object of the corresponding type converted according to the integer
promotions. Their implementation-defined values shall be equal or greater in magnitude
(absolute value) to those shown, with the same sign.

— number of bits for smallest object that is not a bit-field (byte)
CHAR_BIT 8

— minimum value for an object of tyfségned char
SCHAR_MIN 127 11 -(2"-1)

— maximum value for an object of tygegned char
SCHAR_MAX +127 /| 2'-1

— maximum value for an object of typ@signed char
UCHAR_MAX 255 /| 22-1

— minimum value for an object of typdhar
CHAR_MIN see below

— maximum value for an object of typhar
CHAR_MAX see below

5.24.1 Environment 524.2.1

WG14/N843 Committee Draft — August 3, 1998 19

— maximum number of bytes in a multibyte character, for any supported locale

MB_LEN_MAX 1
— minimum value for an object of tyhort int

SHRT_MIN -32767 I/ -(2%-1)
— maximum value for an object of tygaort int

SHRT_MAX +32767 /| 2¥°-1
— maximum value for an object of typmsigned short int

USHRT_MAX 65535 // 2%-1
— minimum value for an object of typet

INT_MIN -32767 |/ —-(2¥*-1)
— maximum value for an object of tyj&

INT_MAX +32767 /I 2°-1
— maximum value for an object of typ@signed int

UINT_MAX 65535 // 2%-1
— minimum value for an object of typeng int

LONG_MIN -2147483647 /I —(2%'-1)
— maximum value for an object of typeng int

LONG_MAX +2147483647 /| 2%'1-1
— maximum value for an object of typasigned long int

ULONG_MAX 4294967295 /| 2¥-1
— minimum value for an object of typeng long int

LLONG_MIN -9223372036854775807 // -(2%2-1)

— maximum value for an object of tyjpeng long int
LLONG_MAX +9223372036854775807 /| 2%%-1

— maximum value for an object of typ@signed long long int
ULLONG_MAX 18446744073709551615 // 2°4-1

If the value of an object of typehar is treated as a signed integer when used in an
expression, the value &@HAR_MINshall be the same as that ®€HAR_MINand the
value of CHAR_MAXhall be the same as thatSCHAR_MAXOtherwise, the value of
CHAR_MINshall be 0 and the value &@HAR_MAXshall be the same as that of
UCHAR_MAY) The value UCHAR_MAX+1shall equal 2 raised to the power
CHAR_BIT.

5.2.4.2.2 Characteristics of floating typesfloat.h>

The characteristics of floating types are defined in terms of a model that describes a
representation of floating-point numbers and values that provide information about an
implementation’s floating-point arithmetl®) The following parameters are used to

13) See 6.2.5.

524.2.1 Environment 524.2.2

20 Committee Draft — August 3, 1998 WG14/N843

define the model for each floating-point type:

S sign 1)

b base or radix of exponent representation (an integer > 1)

e exponent (an integer between a minimeyp and a maximune,,,4,)
p precision (the number of babadigits in the significand)

fi nonnegative integers less tha(the significand digits)
A normalized floating-point number(f; > 0 if x # 0) is defined by the following model:

p
x=sxb®x > f,xb™®, e, <e<eny
k=1

Floating types may includealues that are not normalized floating-point numbers, |for
example subnormal floating-point numberg #(0, e = e, f1 =0), infinities, and |
NaNs!® A NaN is an encoding signifying Not-a-Number. duiet NaN propagates
through almost every arithmetic operation without raising an exceptsignaling NaN
generally raises an exception when occurring as an arithmetic op&and.

The accuracy of the floating-point operatiofis <, *, /) and of the library functions in
<math.h> and <complex.h> that return floating-point results is implementatipn
defined. The implementation may state that the accuracy is unknown.

All integer values in thefloat.h> header, excepELT_ROUNDSshall be constant
expressions suitable for use#if preprocessing directives; all floating values shall be
constant expressions. All excdDECIMAL_DIG, FLT_EVAL_METHODFLT_RADIX, |
andFLT_ROUNDShave separate names for all three floating-point types. The floating-
point model representation is provided for all values exEept EVAL_METHOLRnNd
FLT_ROUNDS

The rounding mode for floating-point addition is characterized by the value of
FLT_ROUNDS"

-1 indeterminable
0 toward zero
1 to nearest
2 toward positive infinity
3 toward negative infinity

All other values for FLT_ROUNDScharacterize implementation-defined rounding

14) The floating-point model is intended to clarify the description of each floating-point characteristic and
does not require the floati